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When a plasma is penetrated by an electromagnetic wave at a frequency close to the plasma 
electron frequency, Langmuir and ion-sound waves can be excited within the plasma. Under 
these conditions the linear light absorption mechanism becomes ineffective and the plasma 
itself transforms to a turbulent state [i]. Such conditions can be created, for example, in 
a light detonation plasma. 

At radiant energy flux densities I ~ 108 W/cm 2 a light detonation charge driven by a 
shock wave can be maintained in air [2]. A light detonation wave (LDW) contains a shock 
wave (density discontinuity) and a layer of thickness s in which the light energy flux is 
absorbed. Usually s << d (where d is the characteristic transverse dimension of the dis- 
charge front, which is of the order of magnitude of the size of the light beam). The plane 
discharge front moves toward the light ray; the speed of the LDW is determined by conditions 
of conservation of mass flux density, momentum, and energy on the density discontinuity. 
The theoretically calculated value of the LDW velocity agrees well with experimental data: 

D = I/p0] ( 0 . 1 )  

(X0 i s  t h e  a d i a b a t i c  index  and P0 i s  t h e  d e n s i t y  of  t h e  c o l d  gas  [ 2 ] ) .  As a r u l e ,  t h e  v e l o c -  
i t y  o f  d i s c h a r g e  f r o n t  mo t ion  D ~ 10 ,cm/sec ,  t h e  p lasma t e m p e r a t u r e  T e ~ 10 eV, and t h e  e l e c -  
t r o n  d e n s i t y  in t h e  p lasma r e a c h e s  v a l u e s  a t  which t h e  e l e c t r o m a g n e t i c  wave f r e q u e n c y  becomes 
e q u a l  t o  t h e  p lasma e l e c t r o n  f r e q u e n c y .  

In  a t u r b u l e n t  p lasma f o r  a s u f f i c i e n t l y  h i g h  l e v e l  o f  t h e  f l u c t u a t i o n  f i e l d s  c o l l e c t i v e  
a b s o r p t i o n  o f  l i g h t  e n e r g y  can r e a c h  maximal  v a l u e s .  We w i l l  d e m o n s t r a t e  t h a t  t h i s  mechanism 
can p l a y  t h e  d e f i n i n g  r o l e  in  a l i g h t  d e t o n a t i o n  d i s c h a r g e .  

1. Plasma Wave Dynamics .  We w i l l  assume t h a t  a t r a n s v e r s e  e l e c t r o m a g n e t i c  wave l i n e a r l y  
p o l a r i z e d  a l o n g  t h e  x - a x i s  

E t  = E0exp ( i k t z - - i ~ t t )  + ~c.c. (I.i) 

p r o p a g a t e s  a l o n g  t h e  z - a x i s  toward  t h e  d i s c h a r g e .  For  s l i g h t  d e t u n i n g  ( [ ~ t  - ~el ~ a e ) ,  such  
t h a t  t h e  f r e q u e n c y  w t i s  c l o s e  t o  t h e  e l e c t r o n  p lasma f r e q u e n c y  a e and t h e w a v e  number k t § 0, 
p a r a m e t r i c  e f f e c t s  l e a d i n g  t o  deve lopmen t  o f  i n t e n s e  Langmuir  and i o n - s o u n d  waves m a n i f e s t  
t h e m s e l v e s  most  i n t e n s e l y  [ 3 ] .  We w i l l  now c o n s i d e r  a r e f e r e n c e  f rame a t t a c h e d  to  t h e  d i s -  
c h a r g e  f r o n t .  The e q u a t i o n s  f o r  t h e  p lasma waves can be o b t a i n e d  from t h e  hyd rodynamic  equa-  
t i o n s  o f  t h e  p lasma and t h e  P o i s s o n  e q u a t i o n :  

o o o (6njvs) = O, 8nj + n o ~ vj + 

o o eE ~ r  i a 6h i ,  ( 1 . 2 )  

OE 
o-7 = - -  4 a e  (6n~ - -  5n  d .  

Here vj, 6nj (j = e, i) are plasma velocity and density fluctuations for electrons and ions, 
n o is the mean density, E is the electric field. For Langmuir waves L the adiabatic y = 3, 
while for ion-sound waves sy = i. We assume that the electron temperature T e is much greater 
than the ion temperature Ti, and that in the equation of motion for the ions the term related 
to the pressure gradient can be neglected. 

Electrons in the plasma field Ep can participate in L- and s-oscillations, while ions 
can carry out only s-oscillations, i.e., 

6 n  e = ~ n s - l - S n L ,  v e = v~ + vL,  ~n i  = 6 N s ,  ( 1 . 3 )  

v i = Vs ,  E p  = E s + E L . 
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Substituting Eq. (1.3) in Eq. (1.2) we find a system of equations describing the plasma wave 
dynamics : 

( a  ~- o,~_~ o~- ~ % o ~ 3 V ~ a  ~ ,, ~fl- 
--e - -  O f T  Ox 2] T Ox 2 2 ~tO 

Ox-/ - Off- "+'~Tq ~ (1.4) 

(V T = / T ~ e  i s  t h e  e l e c t r o n  t h e r m a l  v e l o c i t y ,  c s = ] ~  i s  t h e  s p e e d  o f  t h e  i o n - s o u n d  w a v e ) .  

C o n s i d e r i n g  t h a t  t h e  e l e c t r o m a g n e t i c  w a v e  s e t s  t h e  e l e c t r o n s  i n t o  m o t i o n  a l o n g  t h e  
x-axis : 

v~ = ~ E o e x P ( - -  io)tt) + c . c . ,  
( i . 5 )  

we will seek a solution of Eq. (1.4) with consideration of nonlinear interaction of the three 
waves which generates higher harmonics and modulation modes. Thereform in the future we 
will represent all the variable quantities in the form of series: 

v~ = evP)e~%+ d v?)e =~'' + . . .  § ~.~., 

/,,(1)~ i~L ~ - (1) j~s  g2 U(2)~ 2 i~L ~ ~)~2)e2i~s 
L'e = ~ \ V L  ~ - F ' U s  ~J ) +  ( O t +  L ~ ~-  + 

+ v+e ~(%+%) + v_e  ~ (*L-* ' ) )  § . . .  + c . c . ,  

( 1 . 6 )  

where ~L = k L x - -  mLt; ~s = ksx-- mat; WL, ms, kL, k s are the frequencies and wave numbers of 
L- and s-waves; v t is defined by Eq. (1.5). 

Substituting the solutions of Eq. (1.6) in Eq. (1.4) and considering the exact resonance 
condition (for k t ~ 0) Ik~[ = -[ksl, mt = mL + ms, after averaging over high frequency oscil- 
lations we arrive at a system of abbreviated equations 

o v o ,~ ,~La ], g/- - -  L ~-~'x } aL - -  iC~L [aL r'ar. - -  i~r~ l a~ 12aL ---- - -  

b-i" q- c, a ,  - -  i a ,  ] as [" , - -  i[3, l aL r ' a ,  = - -  saL. 

( 1 . 7 )  

Here V L = 3(kVT/~e)V T is the group velocity of the Langmuir wave; a L, as are complex ampli- 
tudes of 6nL, 6Us; aj, ~j, %j (j = L, s) are nonlinearity coefficients and coupling parame- 
ters: 

I ~e f~e 2 
--7". ~L ~ ,, ~e 

8n~ k~v~  ' 8,,~ m # ,  ~'~k'~'~ ',.~ ~_,.,q.. ~ , ,  ' 

o ] meQe eEo 
~L = -~ lwt ,  ~,, = - - -  kv ~ v~ = 

. " 2 mira) s ttZeO) t 

(1.8) 

We will note that for aj, ij = 0 Eq. (1.7) describes the initial stage of parametric insta- 

bility with increment V~%L%s=kt,? y ~ --(eEo/meoyr)(Qeo~s) 172 [4]. The increment is propor- 

tional to the amplitude of the pump wave. In the literature such instability is also called 
decay instability. 

We will seek a solution of Eq. (1.7) in the form of a wave with constant profile. We 
rewrite Eq. (1.7) in the new variable $ = x -Vt, obtaining for standing waves 

Oa L 
o~ - -  iaL I aL liaL - -  ifJL I a, [=aL = - -  ~,La*, ( 1 . 9  ) 

Oas , 
- i ~ ,  l a ,  12a, - -  i ~ I aL 12a~ = - -  ~ ,aL,  
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where the coefficients are normalized in the foilowing manner: 

aj  ~ ~/u~, f3j .-+ f~/uj, ~j -+  ~./uj, uL = --(VL + V), 
Us = c , - -  V, j---- L , s .  

I n  Eq. ( 1 . 9 )  we t r a n s f o r m  t o  a m p l i t u d e - p h a s e  v a r i a b l e s ,  t a k i n g  
Eq. ( 1 . 9 )  a p p e a r s  a s  

d A 2 2~.LALAs cos q), (p q~L .-{- (Ps, d--~'~ L =  - -  ---- 

~3sAL J 

From nhe  f i r s t  two e q u a t i o n s  o f  ( 1 . 1 0 )  we f i n d  t h e  i n t e g r a l  o f  t h e  m o t i o n  

ai = A1 exp (i(pi). Then  

d 2 2)~ALA, cos ~-A~ = - -  % 

' ~ 7 " ~  2 sin q~. 
-r-s L I ' ~'LA, 

(i.lO) 

(i. II) 

Below we will regard the integration constant C = 0, assuming that as g § i~ A2j § 0. 

Making use of Eq. (i.ii), from Eq. (i.i0) we obtain the equations of wave dynamics: 

d ~ ~-~ q) - -  2)~L~s  sin 2q~ = O ,  

a A l  = ~ d 9  .o l/" E ~ ,  sin cp, a = aL 1 4  %XL) §  1 4  ~,xr. )" 

The first of these has the form of a steady state sine-Gordon equation, solutions of which 
are well known and expressible in terms of elliptical functions [5]. We write the solution 
on the separatrix for boundary conditions g § • A2j § 0, corresponding to the solution 

= \ ) ca  - ' / '~ (2  I/I ~,~ I (x  - v t ) ) .  AL [ a l  . 

2. System Stochastization. _SpectraiProperties. We will study the system dynamics 
over time close to the separatrix under the action of a periodic disturbance. To do this 
we consider the nonresonant terms in Eq. (1.4) with a higher order of smallness: 826neVe/ 
8xSt = 2kvt~ (026n~vd3xOt)(me/m 0 = (mdml)kv~ After corresponding averaging we find the 
system of abbreviated equations 

where aj, Sj, lj are defined by Eq. (1.8); ai=---Oaj/Ot. 

In the variables a7 = Ajexp (i(pj) system (2.1) can be rewritten in the form 

+ o 8 sin 1p = eo)~ c o s  -qet ,  e = %/g2e ;  

i ( . sin=;_,2); A ~ = ~ -  ~n-2o0 

o)~ = 4)~L;%, ~ = 29 -i- a.  

(2.2) 

(2.3) 

(2.4) 

In deriving Eq. (2.2) use was made of Eq. (i. Ii), with averaging over high frequency oscilla- 
tions carried out with the assumption that ~0/~e << i. 

We will consider ~ as a generalized motion coordinate. Then the unperturbed portion of 
Eq. (2.2) has the form of the equation of a nonlinear pendulum of unit mass with Hamiltonian 

~ - ~oo ~ co~ , .  H = - ~ -  ( 2 . 5 )  
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The solution on the separatrix corresponding to the Hamiltonian H c = ~0 
condition AL 2 + 0 as t § ~, is 

A 2 2r176 -i --ch o) o ( t - t o ) ,  ~ = 2% ch-%)o (t --  to) L =  (% 

and the boundary 

( 2 . 6 )  

(t o is an integration constant). We introduce the parameter 

N = ~o l~(H)  ( 2 . 7 )  

(m0 is the eigenfrequency of small oscillations). 

It was shown in [6] that near the separatrix 

N ~ .J_t l a  32Hc 

H e - -  H '  
He = o~), ( 2 . 8 )  

and the Fourier harmonic amplitude for ~ is 

b~ ~ 80) exp (--an~N), 

i.e., all amplitudes are approximately equal up to n ~ N. With approach to the separatrix 
N + ~, and the spectruan tends to continuity. 

We will obtain an expression for the spectral power density of the amplitude Aj. We now 
introduce the correlation function qj(T) - <A.(t)A.(t + ~)> (the angle brackets denote averag- - j J 
ing over the set (time) [6]). Then the spectral density 

Using the expression for A L from Eq. (2.6) we find 

2 ~--1 ~(0 
= ,.. (,o) - -  qz 2W" 

Hence it is evident that the wave spectrum is wide (the spectral width is approximately equal 
to the eigenfrequency Am = m0) and decays exponentially for high ~. 

To study the disturbed system (2,2)-(2.4) we transform to the variables action J - angle 
e with Hamiltonian 

H Ho(J ) + eV(J,O)cosset, V ~ ~o~, ( 2 . 9 )  

where H0(J) is defined by Eq. (2.5) with ~, ~ replaced by J, 8. 

In these variables Eq. (2.2) takes on the form 

e OV OV os = ~rs) o v ~ c o s ~ , t ,  0=co(])+~7c Q,t. 

We write the reflection along the separatrix for system (2.10) as [5] 

(s, I aWlc(s' x), 7=J+~--OT C z), ~ = ~ + ~ ( j )  ,Ls e ~7 

C(a r , X ) = -  dt~+cos%(t),  X = a e .  
At 

From Eq. (2.11) we define the parameter K, which characterizes the stochastic state of the 
system: 

(2.10) 

(2.11) 

ez~fte f ~et . K = - ~ -  [ o~ oc ov 
E~ I Co, Co ---- lEVI = dt ~ +  sin ( 2 . 1 2 )  

At 

800 



For ~e >> m0 near the separatrix it follows from Eqs. (2.7), (2.8) that 

(2.13) 

Substituting in Eqs. (2.12), (2.13) the values of ~, V from Eqs. (2.6), (2.9), and consider- 
ing that intense stochasticity develops for K ; i, we find the level of stochasticity in H: 

Ill-f[cl ~exp _ ~ /  It~ ~ ~ ( 2%/" 

The physical pattern of developing stochasticity is related to nonlinear resonances within the 
the system under the action of the periodic disturbance. In fact, the resonance condition 
has the form mm(H) = ae, and the distance between resonances ~e = le(IIm.~)-- m(II,~)I~_ o2/~e. 
The width of the resonance in frequency is Am = Idm/dHIAH. With approach to the separatrix 
the frequency m(H) § 0, the derivative thereof increases (Id~ (~o0/e)), so that the 
width of resonances increases, and the distance between resonances decreases. As a result 
the network of resonances overlaps and a phase layer with stochastic dynamics develops. 

To this point we have in fact determined the region of wave phase stochasticity. We 
will now evaluate the stochasticity of the plasma waves with respect to energy (amplitude). 
It follows from Eq. (2.6) that the stochasticity region 6A2/A 2 ~-- id~/dHI(AH/oo). Substitut- 
ing in this expression the values from Eqs. (2.7), (2.8), (2.13), we have 

(6A~'/A ') ,-, s 2 = (o)~/Q~). 

3. Evaluation of Results. We will first find the characteristic frequency and relative 
fluctuation level. Using in Eqs. (2.4), (2.6) the values of the coefficients from Eq. (1.8), 
we obtain pm--~e 

% = kv~ V 
�9 0 3/2 2 2 / [an~l[§247 2_~48.~_~ k'n---~e]kV~(m~O~ ~kVr [l+2mr162 (3.I) 

n~ -- mi~ s ]" 
It is evident that m 0 coincides with the value of the plasma oscillation increment in linear 
theory (initial stage of decay). 

We will apply the results obtained to a light detonation discharge. Assuming that the 
LDW is maintained by C02-1aser radiation, so that mt ~ ~e ~ 2"I014 sec-1, and taking kV T ~ 0.I 
~e, Te ~ I0 eV, V T ~ i0 s cm/sec, we find from Eq. (3ol) ma ~ I011 sec -I, 6n/noN(lO-1-- I0-2), 
with characteristic wave numbers k ~ 105 cm -l. Usually in experiment the transverse discharge 
diameter d ~ 1 cm [2, 7] and the condition kd m 1 is well satisfied. The diffraction angle 
for plasma waves depends on i/~ and for ~ ~ 10 -2 cm I/s ~ i, i.e., it is small. 

We will now consider the rate electromagnetic energy contribution to the plasma. For a 
linear absorption mechanism the energy contribution is determined by the frequency of collision I 
of electrons with ions v s. It was shown in [4] that it is not only the micro-fields of indi-' 
vidual particles, but the electric field of plasma oscillations which has scattering proper- 
ties. Calculations show that for field values of the order of magnitude of the thermal field, 
the electron path length due to scattering on the thermodynamic equilibrium plasma oscilla- 
tions is an order of magnitude greater than the path for paired collisions. Correspondingly 
the effective frequency of energy contribution caused by scattering on plasma oscillations is 
less than u s . But with instability the oscillation amplitude rises to values many times the 
equilibrium value. In such cases the free path length and effective energy contribution 
frequency depend upon scattering on plasma oscillations. Such heating is often termed tur- 
bulent, since the mechanism controlling the nature of the anomalous resistance is turbulence 
produced by the instability. In order of magnitude the effective frequency characterizing 
the rate of the turbulent contribution has the form -v T ~ neWT/n0T e (WTN E2/8~ ~ nom~/2 
is the energy density of the turbulent oscillations). The mean values of potential and 
kinetic energy for longitudinal oscillations are approximately equal and WT ~E2/4~ 
(~n~)~T/n0 . Then v T ~ ae(6ne/n0) 2 [4]. The studies performed show that for typical discharge 

~ cm -3 the turbulent energy channel is more effective (u s parameters (T e I0 eV, no ~ 1019 ~ 
neVTC, Vs ~ (i09-i01~ sec-1, VT ~ (i012-i01~) sec-1)" 
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ASYMPTOTE OF THE NAVIER-STOKES EQUATION SOLUTION IN THE 

VICINITY OF A BOUNDARY ANGLE 

V. A. Kondrat'ev UDC 532.516 

In a study of single-sided limitations for the Navier-Stokes equations, [i] considered 
the function ~;(r, ~), which satisfies the equation 

AA~ = 0, r < e ,  - - n <  q ) < 0  (1) 

(where ~ > 0 is a constant) with boundary conditions 

~ = 0 ,  A~; = 0, r  0 < r < e ,  
ar 

~2=0,  ~-~=r ,  %o=--~ ,  0 < r < ~ .  

Here (r, cp) is a planar polar coordinate system and A is the Laplace operator. In addition 
we assume the function belongs to the Sobolev space W~ in the semicircle $8 = {(r, @:r <e, 
--~ < ~ < 0}. Using the method developed in [2, 3] the authors presented the expression 

~ = -  rsinq) + Ar3/~(sin-~ + sin~)+O(r~lnr) (2) 

for r-~ 0,--~ < ~ < 0, A = const, which is dependent on ~. Asymptotic representations of 
a~/ar, a~;/acp, A~ can be obtained from Eq. (2) by formal differentiation. In fact, Eq. (2) 
can be refined: for ~0 one can expand in an asymptotic series [2, 4] 

= -- r sin $t ~ A~rr (cp), Aj ---- const, (3) j=3 
where (Dj are eigenfunctions, normalized in L2[--~, 0], of the problem 

T1~ "= -- 2 2 c I 3 + T ~ "  + c D ! v = 0 ,  
(4) 

--~ < ~ <0, ~(- ~) = ~(0) = 0, ~' (-~) = ~" (0) = 0 

Equation (3) is asymptotic in the sense that no matter what the value of N, the estimates 

I D= (,) q- r sin ~ -- L A7112*i (~) l = O(r(N+1)'~-'~l~ t=3 

are valid as r + 0 for all ~. Here D~=aI~I/ax~iax~2; l~i : ~z + e2- Note that Eq. (4) with 
constant coefficients is easily solved and the eigenfunctions of Eq. (4) can be written ex- 
plicity; Equation (3) is a special case of a more general expression which gives the asympto- 
tic representation of a boundary problem for an arbitrary elliptic equation in the vicinity 
of an angular point on the region's boundary. It follows from Eq. (3) that in Eq. (2) the 
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